[PERFORM-3D][Tool] 组合钢管混凝土CFST柱纤维截面工具 [Combined CFST Column Inelastic Fiber Section]

实干、实践、积累、思考、创新。 应网友的要求,增加一个组合矩形钢管混凝土柱截面纤维划分的小工具,分享给大家。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 针对PERFORM-3D软件的组合钢管混凝土柱截面纤维剖分小工具。程序通过导入文本参数(.csv),直接生成纤维截面的参数,并导出PERFORM-3D需要的二进制文件(.PF3CMP)。然后通过PERFORM-3D导入.PF3CMP文件完成繁琐的纤维截面输入工作,节省你的时间。 This program is used for the data input of the “Inelastic Fiber Column Section” in PERFORM-3D. Through the import of section properties in …

[PERFORM-3D] PERFORM-3D中阻尼怎么取值?

实干、实践、积累、思考、创新 读者在看《PERFORM-3D原理与实例》(http://www.jdcui.com/?page_id=3757)一书时问我这个问题,今天抽时间整理了一下,如果我回答有问题,欢迎大家批评指正。 读者问题:“PERFORM-3D中阻尼参数怎么取?常用的结构体系如钢筋混凝土结构、钢结构、型钢混凝土结构的阻尼比怎么取值?“ 答: (1)p3d中,建议用模态阻尼+瑞丽阻尼的组合方式进行动力分析,你刚才界面显示的是瑞丽阻尼。为何这样处理?因为我们小震分析用的是反应谱法,各振形指定阻尼,这个阻尼组装成矩阵对应的阻尼就是模态阻尼。而p3d中,也提供了这个选项,但完整的模态阻尼阶次是与动力自由度数量一致的,除非把所有模态求出来,才能组合成完整的模态阻尼,而实际弹塑性动力分析的时候不可能求太多阶模态,因为计算效率问题,所以就取前面主要的模态数量,而放弃后面的模态,比如p3d模态分析的最多好像只允许60阶,那舍弃掉的就是部分高频阻尼,因此,开发者建议,这里仅是象征性增加一点瑞丽阻尼,如上图的0.1%,同时有利于收敛性,有利于收敛性。具体取值对总体结果影响不大。 (2)三种结构阻尼比怎么取,按整个结构取一个统一阻尼比其实是最早的提法,整体结构笼统一般仅适用于纯质材料,如常规混凝土结构取0.05,纯钢结构0.03,可能都没太多异议。但到了混合结构怎么取,就头疼了,因为分不清材料多少。其实目前大部分弹性分析软件,包括YJK,midas Gen 都提供了基于材料应变能的阻尼比计算方法,你直接指定材料的阻尼比,软件会基于材料应变能算出各阶振型的阻尼比。对于混合结构,你会得到各阶振型下的阻尼比,然后各阶振型按不同的阻尼比直接进行反应谱计算。 (3)因此回到实际情况,倘若你p3d做的是混合结构,建议你在yjk中用材料应变能进行分析,得到前面主要各阶模态的阻尼比,然后再取一个合理值,在p3d中通过模态阻尼比进行指定。因为貌似p3d不能按振形分别指定阻尼比,只能所有模态统一指定一个阻尼比。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[PERFORM-3D] 为何PERFORM-3D中反应谱是按多个阻尼比定义的?

实干、实践、积累、思考、创新 很多读者在看《PERFORM-3D原理与实例》(http://www.jdcui.com/?page_id=3757)一书时问我这个问题,我整理一下,将解答放上来,如果我回答有问题,欢迎大家批评指正。 读者问题:“在p3d书中的静力弹塑性分析的后处理反应谱中为什么要定义多条不同阻尼比的反应谱?弹性反应谱不是按5%吗?“ 答:(1)PERFORM-3D的反应谱定义的实际是一个反应谱族,即可同时定义多个阻尼比的反应谱。 (2)Pushover 非线性分析时候,由于涉及到非弹性体系的等效,这个等效涉及耗能的计算,通过耗能获得附加阻尼,通过附加阻尼比,对原弹性阻尼比下的反应谱进行折减,所以,Pushover分析也涉及到不同阻尼比的反应谱的计算问题。 (3)但一般情况,pushover 考虑非线性耗能下的阻尼比曲线是通过折减弹性阻尼比的方式得到的,P3D中的反应谱族主要用与在弹性反应谱相关的东西上,比如振型分解反应谱法,或者是pushover分析中的弹性阻尼比曲线的定义上。 (4)因此,pushover分析中,多条不同阻尼比的反应谱也是为弹性阻尼比曲线的指定考虑的。简单的说,就是如果你的弹性阻尼比并不是5%,或者你输入了5%,但是你的反应谱曲线不包括这个5%,那么他应该是按多条取值来插值的,这个多条弹性反应谱,并不是用考虑非弹性耗能对弹性阻尼比反应谱曲线的折减上。可以看《PERFORM-3D原理与实例》一书的 301 页,第一栏让你输入弹性反应谱取值,这个时候其实程序放开让你定义了,还可以在这指定,比如你指定一个3.5%的反应谱,如果你的反应谱族没有3.5这个数,他应该就插值,得到3.5%的弹性反应谱,然后再后续进行pushover,pushover后续怎么折减,都是基于这个曲线3.5%的弹性曲线进行折减了。具体你测试一下就知道了。 (5)当然不是什么结构的弹性反应谱都是5%,弹性反应谱的阻尼比也要看结构,比如钢结构,可能取5%阻尼比就偏高了,可能取的是3%阻尼比。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[PERFORM-3D][软件][编程] PERFORM-3D反应谱转换工具(PERFORM-3D Spectrum)

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) PERFORM-3D反应谱转换工具。 将中国规范反应谱转换为PERFORM-3支持的反应谱,可以是文本格式,也可以是二进制格式。 程序界面 ( Program Interface ) PS. 后续有时间再介绍。。。。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[弹塑性][PERFORM-3D][SAUSAGE] 某6度区超高层结构PERFORM-3D与SAUSAGE大震弹塑性整体结果对比(初探)

实干、实践、积累、思考、创新。 临时用PERFORM-3D补算了两组波,正好做个SAUSAGE和PERFORM-3D大震弹塑性时程分析对比。 另外,由于太久没搞PERFORM-3D了,幸亏师兄和师弟帮忙,在此表示感谢。 由于时间充满,且PERFORM-3D分析结果不放到超限报告的,因此只是粗略地进行对比,暂且一看。 PS。项目是一个6度区的300m的项目,所以主要是风控,地震比较弱,因此两个软件的整体结果似乎对得还比较好。 [P1] [P2] [P3] [P4] [P5] [P6] [P7] [P8] [P9] [P10] [P11] [P12] [P13] 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[PERFORM-3D] PERFORM-3D 提示 “**ERROR – not enough state data storage” 错误

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 PERFORM-3D报错,如下图,查看ECHO文件,提示错误如下错误: **ERROR – not enough state data storage needed = 15403, provided = 15000   后仔细检查,错误原因是因为,多个混凝土抗拉抗压强度取得过大,且考虑受拉作用。 经过测试,不考虑混凝土的受拉作用即可解决此问题。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧! 🙂   🙂      ( If you found any mistakes …

[PERFORM-3D] How to use PERFROM-3D Global to Get the Drfit and Structure Setcion Results? (如何使用PERFORM-3D Global提取位移角及截面切割结果)

实干、实践、积累、思考、创新。 最近很多网友问我 PERFORM-3D Global ( Link: http://www.jdcui.com/?p=3446 ) 软件的使用介绍,于是更新了一下这个软件,并介绍如何利用PERFORM-3D Global提取PERFORM-3D任意工况的位移角及截面切割结果。 ( This tutorial provides step-by-step instructions on how to use PERFROM-3D Global ( Link: http://www.jdcui.com/?p=3446 ) to get the Drfit and …

[软件笔记] www.jdcui.com的软件笔记汇总贴

花了点时间,整理了一下 www.jdcui.com的软件笔记,并汇总到以下这个页面,有需要的小伙伴可以收藏一下,持续更新。链接:http://www.jdcui.com/?page_id=2850。Abauqs,Ansys,ETABS,SAP2000,MIDAS,YJK,PKPM,XTRACT,MATLAB,ATUOCAD,PERFORM-3D,OPENSEES,HYPERMESH

[PERFORM-3D] Support Spring 支座弹簧单元建模提示“Too few or too many selected nodes”错误

记录一个十分简单的小问题,主要原因是,近日多个读者在阅读《PERFORM-3D原理与实例》一书的第14章( “往复位移角加载模拟的两种方法”)时反映,按书中的介绍采用支座弹簧单元(Support Spring Element)进行往复位移加载的模拟,但在PERFORM3D中建立 支座弹簧单元(Support Spring)时报错,提示建模选择了太多或者太少节点(Too few or too many selected nodes),如 图1 所示。 图1(Figure 1) 奇怪,为何会这样。PERFORM-3D 中,Support Spring 单元只含有一个节点,太简单不过了。 🙂  。 经过测试,发现是在是小伙伴太粗心了,出现这个问题的原因是,这几位读者在建Support Spring单元时,选用了 Straight Line的方式(如 图2 所示),由于Straight Line需要指定两个点,而Support Spring单元又只能选到一个点,因此 Test后边提示报错。 图2(Figure 2) …

[地震工程][软件] GMS Converter: 地震波通用格式转换器[ GMS Converter: General Formats Transformer for Earthquake Records]

[Tool] GMS Converter: 地震波通用格式转换器[ GMS Converter: General Formats Transformer for Earthquake Records].Support Format(支持的数据格式): PEER NGA Data Base, ABAQUS .inp, ETABS, SeismoSignal, YJK(盈建科),PKPM,SPECTR (Seismic Spectrum Analysis Program from www.jdcui.com), GML & GMS ( Ground Motion Management and Selection Program from www.jdcui.com ), PERFORM-3D, General Format, etc. Modification Function (功能): Scaling (缩放), Time step modification (时间步修正), Format Transform (通用格式变换), Truncation of Data(数据截取), etc.

《PERFORM-3D原理与实例》可以购买了!!!The book “PERFORM-3D Theory and Tutorials” is on the shelf now!!!

《PERFORM-3D原理与实例》可以购买了!!!The book “PERFORM-3D Theory and Tutorials” is on the shelf now!!!《PERFORM-3D 原理与实例》已经可以购买了,以下贴出购书链接,感谢大家关注和支持。Good News!’PERFORM-3D Theory and Tutorials ‘ is on the shelf now. Links to buy the book were given below ~~from 崔济东,崔济东的博客,www.jdcui.com, CJD, JidongCui

[书]PERFORM-3D原理与实例 – 第 20 章 – 足尺框架伪动力试验模拟 ( Chapter 20: Simulation of a Pseudo-Dynamic Test of a Full-Scale Frame)

试件选自ELSA(European Laboratory for Structural Assessment)实验室进行的伪动力试验[1, 2]。试验现场布置如图 20‑1所示,包括两个足尺四层、三跨的钢筋混凝土框架结构,其中一个框架存在填充墙,另一个为空框架结构,本章主要对空框架结构的伪动力试验进行模拟。框架试件的立面图及平面图如图 20‑2所示。

[书]PERFORM-3D原理与实例 – 第 19 章 – 足尺桥墩振动台试验模拟 ( Chapter 19: Simulation of a Full Scaled Bridge Column Shake Table Test)

2010年,美国太平洋地震工程研究中心(PEER)在加利福尼亚大学圣迭戈分校(UCSD)的大型高性能户外振动台(NEES Large High-Performance Outdoor Shake Table)上进行了一个足尺RC桥墩的振动台试验,并举行了试验的盲测比赛[1-4]。图 19 1所示为试件的全景,图 19 2为试验的加载装置示意图。试件为一圆形截面的钢筋混凝土悬臂桥墩,桥墩截面直径为1220mm,桥墩基座通过后张拉螺栓锚固于振动台,防止基座的倾覆与滑动,试件顶部支撑一个大质量块(228t),大质量块用于柱惯性力及指定目标轴压力的施加,柱基座顶面到柱顶(质量块中心)的距离为7320mm,柱的剪跨比为6。柱外围设置了安全装置,用于保护试验人员及试验设备,并在装置上设置了水平导向轮,避免试件发生平面外运动。

[书]PERFORM-3D原理与实例 – 第 18 章 – 缩尺桥墩振动台试验模拟 ( Chapter 18: Simulation of a Reduced Scaled Bridge Column Shake Table Test)

试件选自欧洲地震工程培训与研究中心(European Centre for Training and Research in Earthquake Engineering)进行的桥墩振动台试验[1],为一1/4缩尺的圆形空心截面RC桥墩试件,试件的现场布置如图 18‑1所示,试件的尺寸及配筋如图 18‑2所示。试件顶支撑一个大的质量块(1.86m×1.86m×0.88m,7.8t),大质量块用于桥墩惯性力及指定目标轴压力的施加,试件基座通过后张拉螺栓锚固于振动台,防止基座的倾覆与滑动,试件为螺旋配箍,加密区(距离基座顶面500mm范围)箍筋间距为30mm,其余区域箍筋间距60mm。

[书]PERFORM-3D原理与实例 – 第17章 – 结构整体动力弹塑性分析与抗震性能评估 (Chapter 17: Dynamic elasto-plastic analysis and seismic performance evaluation of the whole structure)

本书前面章节主要介绍了PEROFRM-3D中常用非线性组件和单元的基本属性与应用,旨在建立正确的结构弹塑性分析模型。本章则侧重于介绍结构整体弹塑性分析模型的建立、结构整体动力弹塑性时程分析的步骤及运用PERFORM-3D[1,2]进行结构抗震性能评估的流程。

[书]PERFORM-3D原理与实例 – 第16章 – Pushover 分析原理与实例 ( Chapter 16 Pushover Analysis Theory and Tutorial )

Pushover 分析方法又称为静力弹塑性分析方法或静力非线性分析方法,是一种以结构顶部的侧向位移作为整体抗震性能判据的结构抗震性能评估方法,它将非线性静力分析与反应谱理论紧密结合起来,用静力分析的方法预测结构在地震作用下的动力反应和抗震性能,在基于性能的抗震设计中得到了较为广泛的研究与应用。我国的《高层建筑混凝土结构技术规程》(JGJ 3-2010)第3.11.4条明确指出[1],高度不超过150m的高层建筑可采用静力弹塑性分析方法进行结构的抗震性能评估。通过Pushover分析进行结构抗震性能评估的基本步骤如下[2]:(1)建立结构的Pushover曲线;(2)确定用于评估的地震动水准;(3)选择用于评估的性能水准及其容许准则;(4)采用特定的方法求取结构性能点并进行结构性能评估。常用的Pushover分析方法主要包括ATC-40[3]采用的“能力谱法”、FEMA 356[4]推荐的“目标位移法”、FEMA 440[5]提出的“等效线性化”和“位移修正”两种方法等。其中能力谱法是最早提出的Pushover分析方法,本章主要介绍能力谱法的基本原理及其在PERFORM-3D[6,7]中的应用。

[书]PERFORM-3D原理与实例 – 第15章 – 多点激励地震分析 ( Chapter 15 Multi-support Seismic Excitations )

地震动以波的形式向四周传播,在传播的过程中,不仅有时间上的变化特性,也存在空间变化特性。地震动的空间变化特性主要表现为以下几个方面[1]:(1)行波效应,指的是由于地震波的传播速度有限,当结构支承点间距较大时,地震波到达各支承点的时间存在一定的差异;(2)部分相干效应,指地震波在传播的过程中产生复杂的反射和散射,同时由于地震动场不同位置的地震波叠加方式不同而导致的相干函数损失;(3)衰减效应,地震波在传播的过程中,随着能量的耗散,其振幅将会逐渐减小;(4)局部场地效应,指的是由于地震动场的不同位置土的性质存在差异,导致地震波的振幅和频率也存在差异。这几种效应都会导致结构不同支承点处输入的地面运动存在差异,从结构分析的角度来说都是一致的,统称为多点激励效应或非一致激励效应。PERFORM-3D[2, 3]中不存在针对多点激励的地震分析工况,但可利用PERFORM-3D中的动力荷载工况(Dynamic Force Load Case)加支座弹簧单元(Support Spring)实现多点激励地震分析。本章对此方法进行介绍,并通过具体算例讲解该方法的应用和可行性。

[书]PERFORM-3D原理与实例 – 第14章 – 往复位移加载的两种方法

低周往复荷载试验是一种拟静力荷载试验,试验中采用较低的加载速率对结构或结构构件施加多次往复循环作用,使结构或结构构件在正反两个方向重复加载和卸载,用以模拟地震时结构在往复震动中的受力和变形特性。低周往复荷载试验方法是目前结构抗震性能研究中广泛采用的一种试验方法。
由于低周往复荷载试验能够体现材料及结构的往复加、卸载特性,因此在学习一款弹塑性分析软件时,对其中的本构或单元建立简单的分析模型进行低周往复加载分析,并将分析结果与预期结果进行对比,有助于理解软件的材料本构和单元特性,也是一种比较愉快的学习弹塑性软件的方法。只有在把握了材料、单元和简单模型的基本特性之后,才能更好地将软件应用于复杂的实际工程。
从软件模拟的角度来看,施加在结构上的往复作用最终体现为结构的往复位移。本书在讲解PERFORM-3D的过程中较多采用了简单模型的低周往复位移加载分析,为便于读者使用本书,本章将对PERFORM-3D中进行低周往复位移加载的两种方法进行详细介绍。

[书]PERFORM-3D原理与实例 – 第13章 – 变形监测单元

作为一款结构抗震性能评估软件,PERFORM-3D可以计算和输出各种非线性单元的变形需求-能力比。但对于某些单元,可能存在应变集中,以至于求出的需求/能力比非常大,如果是局部应变集中,以这些单元的需求-能力比作为性能评估的依据就会过于保守。为此,PERFORM-3D提供了一类特殊单元,即变形监测单元(Deformation gage element)[1, 2],该类单元不参与有限元的计算,仅用于监测多个单元的平均变形。变形监测单元具有变形能力属性,使得变形监测单元可以像其他单元一样,通过在建模阶段的【Limit States】模块定义基于变形监测单元的变形极限状态,PERFORM-3D可计算和输出基于变形监测单元的平均变形计算的需求-能力比。PERFORM-3D总共提供了四种变形监测单元,包括轴向应变监测(Axial Strain Gage)单元,梁转角监测(Rotation Gage Beam Type)单元,墙转角监测(Rotation Gage Wall Type)单元,剪切应变监测(Shear Strain Gage)单元。每一种变形监测单元均由相应的变形监测组件组成,所有变形监测组件均在建模阶段的【Component properties】-【Elastic】模块下定义。

[书]PERFORM-3D原理与实例 – 第12章 – 缝-钩单元

结构设计中有一条概念为“强节点弱构件”,指的是构件之间的节点连接应设计得比构件本身强,使得连接的破坏不能先于构件本身的破坏。然而在实际工程中,存在一些情况,连接部位反而不宜做刚做强,比如当连廊本身的刚度较弱时连廊与主体塔楼结构间的连接设计。这种情况下,即使将连廊与主体结构的连接做成刚性,连廊本身也不能起到协调两塔楼变形的作用,反而设置刚性连接后,连廊及连接节点处的受力变得更加复杂,不利于连廊与连接节点的设计[1]。这时可考虑将连廊与塔楼之间做成滑动连接的形式,并设置必要的限复位装置,减少连廊受力的同时又将变形控制在合理的范围内。滑动连接即允许连廊与塔楼的连接节点处有一定的自由变形范围,当连廊与塔楼的相对变形在该自由变形范围内时,连接不受力,当连廊与塔楼相向变形超过自由变形范围时,连接处受压力,当连廊与塔楼背向变形超过自由变形范围时,连接处受拉力。连接处的受拉性能,类似于一对钩子,当钩闭合时受拉,连接处的受压性能,类似于一道缝,当缝闭合时受压,PERFORM-3D[2, 3]中的缝-钩单元(Nonlinear Elastic Gap-Hook Bar)即是对这种受力行为的抽象。

[书]PERFORM-3D原理与实例 – 第11章 – 橡胶隔震支座

除了摩擦摆隔震支座外,另一类常用的隔震支座为橡胶隔震支座。本章首先对几种常见的橡胶隔震支座(天然橡胶支座、铅芯橡胶支座及高阻尼橡胶支座)介绍,接着介绍常用的橡胶隔震支座的力学模型,在此基础上讨论PERFORM-3D[1, 2]中橡胶隔震支座单元的特性及参数定义方法,最后通过一榀橡胶隔震框架结构的地震时程分析实例,讲解PERFORM-3D中橡胶隔震支座结构的建模与分析基本过程。

[书]PERFORM-3D原理与实例 – 第10章 – 摩擦摆隔震支座

摩擦摆隔震支座是一种兼具摩擦耗能和摆动复位功能的金属隔震支座。相比于叠层橡胶隔震支座,摩擦摆型隔震支座能够更加高效地对隔震结构的自振特性进行控制,隔震层的设计对上部结构的质量和刚度等属性的依赖较小,使其应用更为简便。本章首先对摩擦摆隔震支座的基本概念和力学性能做简要介绍,在此基础上介绍PERFORM-3D[1,2]中的摩擦摆型隔震支座单元(Seismic Isolator Friction Pendulum),最后采用PERFORM-3D对一榀摩擦摆隔震框架结构进行动力时程分析,详细讲解PERFORM-3D中摩擦摆隔震支座单元的基本建模过程及参数定义方法。

[书]PERFORM-3D原理与实例 – 第9章 – 屈曲约束支撑

屈曲约束支撑(Buckling Restrained Brace,BRB)通过外包约束构造对钢支撑芯材的横向变形进行约束,避免了钢支撑芯材受压屈曲,使得支撑构件在轴向受拉与受压时均能达到材料屈服而不发生屈曲,充分发挥了钢支撑芯材的材料性能,相比于普通钢支撑,是一种耗能更好的支撑构件。本章首先对屈曲约束支撑的基本概念和力学性能做简要介绍,在此基础上介绍PERFORM-3D[1,2]的BRB组件及单元,最后采用PERFORM-3D对一屈曲约束支撑框架结构(Buckling Restrained Brace Frame,BRBF)的低周往复荷载试验进行模拟,详细讲解PERFORM-3D中BRB单元的基本建模过程及参数定义方法。