[软件][地震波][抗震] GMS_DESIGN: Ground Motion Selection Program for Practicing Engineers [基于目标谱匹配法地震波选波工具 工程师版]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) GMS_DESIGN是从最初的GMS选波系统( [地震波][软件]GMS: Ground Motion Selection System [强震记录选取系统] )精简后的一个更加简便的且符合工程师习惯的基于目标谱匹配法的天然地震波选波工具,主要功能包括: (1)软件自建波库选波,含Peer 3000多组3向地震波。 (2)支持多个指定的阻尼比(3% 5% 7%) (3)支持自定义需要匹配的目标反应谱 (4)软件选波满足抗震规范要求,可指定匹配的目标峰值加速度PGA (5)软件提供两种目标谱匹配方案:离散周期点匹配法及周期范围匹配法。 两种算法均可自定义多种具体参数,比如 离散周期的数量,特定周期点的误差百分比限值,特定周期点的误差权重等,以实现更加灵活更加通用的自定义选波功能。 实践结果表明,离散周期点匹配法侧重于控制具体周期点的反应谱误差,周期范围匹配法则侧重于控制指定周期范围内地震波反应谱与目标谱形状的吻合程度。 采用软件提供的算法,可以实现,各种形状反应谱地震波检索,也能非常简便实现常说的双频段选波、多频段选波等。 (5)软件提供了一些便捷的GUI操作,如:可多次初选地震波,把初选地震波添加到选中,然后对勾选的地震波进行平均谱计算及指定周期点谱误差计算等。 (6)软件可输出所选的三向地震波加速度时程、地震波的反应谱及目标谱、周期点的误差结果及地震波的地震事件信息、发震时间、NGA编号、震级、站台信息等。 软件可满足隔震结构、钢结构、IDA分析选波、双频段选波等科研与工程需求。 …

[软件][振控] FOUR_TRAN 案例5: 风振响应频谱分析 (FOUR_TRAN Ex5: Wind induced vibration response spectrum analysis)

实干、实践、积累、思考、创新。 这几天更新了FOUR_TRAN (  [数学][地震动][软件] FOUR_TRAN: Fourier Analysis Tool [傅里叶分析工具] ),顺便做个风振响应的频谱分析例子。 下图所示,为某超高层整体分析得到的结构的X向顶点风振加速度时程,将其导入FOUR_TRAN,点击Run Fourier Analysis,可在第二个图中看出频谱。 由频谱图可看出,X向风振响应主要受结构的X向平动振型控制,其中主要受X向一阶平动振型控制。 进一步可在FOUR_TRAN中将X轴换为周期的形式,可看到各阶控制振型的对应的周期。 同理,将Y向风振响应时程导入FOUR_TRAN,也可看到Y向风振响应主要受结构的Y一阶平动振型控制。 PS. 一般情况,高耸结构或超高层结构,风振响应主要受一阶平动振型控制。 这也是风振响应与地震响应差别的一个地方。 案例 ( Examples ) [00] [数学][地震动][软件] FOUR_TRAN: Fourier Analysis Tool [傅里叶分析工具] …

[动力学][软件] NMDOF算例1 —— 单自由度体系(WEN模型)非线性动力时程分析 [Nonlinear Dynamic Time History Analysis of Single Degree of Freedom System (WEN Model)]

实干、实践、积累、思考、创新! NMDOF是一个多自由度剪切层模型动力非线性分析工具。NMDOF软件链接:[软件][动力学][编程] NMDOF v2022: A Tool for Nonlinear Dynamic Time History Analysis of Shear-Type MDOF System (多自由度剪切层模型系统动力非线性时程分析工具 v2022) 本篇博文用NMDOF做一个单自由度非线性动力时程分析案例,采用模型是Plastic Wen模型,也就是常说的Bouc-Wen模型,并同时利用SAP2000进行对比验证。 (1)模型参数 质量【MASS:100】 材料模型【MATERIAL:Plastic Wen】 Stiffness: 80000 Yield Strength: 640000 Post …

[Dynamics][动力学][抗震] 等效地震力与伪加速度反应谱 (Equivalent Static Lateral Seismic Force and Pseudo-Acceleration Spectrum)

实干、实践、积累、思考、创新。 《建筑抗震设计规范》(GB50011-2010)中给出了采用振型分解反应谱法计算地震作用时的地震力计算公式:\({F_{ji}} = {\alpha _j}{\gamma _j}{X_{ji}}{G_i}\),其中\({\gamma _j} = \frac{{\sum\limits_{i = 1}^n {{X_{ji}}{G_i}} }}{{\sum\limits_{i = 1}^n {X_{ji}^2{G_i}} }}\),\({F_{ji}}\)为j振型i质点的水平地震作用标准值;\({\alpha _j}\)为相应于j振型自振周期的地震影响系数;\({X_{ji}}\)为j振型i质点的水平相对位移;\({\gamma _j}\)为振型的参与系数。以下根据结构动力学的相关理论,给出上述公式的一种推导。 1多自由度体系振型分解法 Mode Superposition Method 对于多质点体系,地震动力方程为: $${\left[ M \right]\left\{ {\ddot u} \right\} …

[地震][动力学] 对称结构的地震剪力规律 (Seismic Shear Law of Symmetrical Structures)

实干、实践、积累、思考、创新。 来自小伙伴 刘骥 的分享。这个是继《 [抗震][动力学] 对于整体结构,X向地震作用下有Y向剪力吗?有!! 》后对对称结构进行的简单测试。直接看测试结果吧。 算例1: 算例2: 可见,剪力作为矢量,是满足平行四边形法则的。同时,对于对称结构,往哪个方向输入地震加速度,总剪力均一致。 相关博文 ( Related Topics) [01] [地震][动力学] 对称结构的地震剪力规律 [02] [地震][结构] 双向地震作用效应,【先振型组合,再方向组合】及【先方向组合再方向组合】的差异?(实际案例测算) [03] [地震计算][反应谱][动力学][CQC] 振型叠加法随着组合振型数量的增加各种响应量是怎么变化的? [04] [抗震][动力学] 对于整体结构,X向地震作用下有Y向剪力吗?有!! 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[抗震][结构设计][规范] 非抗震设计情况下混凝土柱的“轴压比”可达多大?

实干、实践、积累、思考、创新。 题目可能好像提的不是太专业,因为通常轴压比说的是抗震的情况下的概念,所以这里加上了双引号。不过,不要在意这些细节。起因是,小伙伴在群里讨论轴压比的相关问题:混凝土柱的轴压比是不是不能大于1.0,非抗震情况下是不是不能比1.0大太多? 先引出轴压比的公式,对于普通混凝土柱,设计轴压比的定义为 N/(fc*A)。N为设计轴力(抗规为考虑地震组合下的轴力值),fc为混凝土轴心抗压强度,A为混凝土截面面积。 这里面有两个问题: (1)轴压比是否大于1.0? (2)轴压比如果能大于1.0,能大多少? 在混凝土结构设计中,构件的轴压比,是抗震设计时提出的概念。在地震作用下,构件存在往复变形,限制竖向RC构件的轴压比不过大主要是为了提高构件在往复荷载作用下的延性。因为,在相同构件配筋条件下,轴压比越大,构件越倾向于小偏心受压破坏(脆性),轴压比越小,越倾向于大偏心受压破坏(延性好)。在非抗震设计情况下,因为构件不存在地震情况下的往复荷载作用,因此对延性无直接控制要求,侧重强调构件的承载力,规范对“轴压比”无直接控制。 限制轴压比,主要是控制构件延性。从轴压比的公式也可以看出,轴压比等于1.0也不是构件破坏的临界条件,因为公式没有考虑钢筋的作用,1.0仅表示压力全为混凝土承担,素混凝土情况下,构件破坏。 因此,问题1的回答是: 轴压比是可以大于1.0的,即便是抗震设计情况下,也可以大于1.0。抗震规范规定,当对柱子采取了可靠的提高延性的加强措施后(如附加芯柱、对柱的箍筋采用螺旋箍加密布置等等),可以提高柱的轴压比限值,最大不大于1.05。 对于问题2,抗震设计时,规范要求不大于1.05,对于非抗震设计的柱子,虽然不直接控制柱的轴压比,但柱的要满足承载力要求,当柱达到极限受压承载力时,也有对应的“轴压比”,此时的“轴压比”可以有多大? 对于常规柱,当柱不受弯仅受压时,即轴心受压时,柱能承受的轴压力最大,轴压比也最大(从PM曲线可知)。 为此,以轴心受压柱为例,通过求解轴心受压柱的承载力,即可反算出非抗震情况下,柱的轴压比。 假定柱子截面尺寸为 500*500,混凝土强度等级为C35,钢筋采用HRB400,层高为3300的底层柱,则依据《混凝土结构设计规范》6.2.15节,在假定柱配筋率的情况下,可反算柱的轴心抗压承载力N,由N可计算对应的“轴压比”。具体计算过程如下: 由以上分析可见:随着配筋率的增加,轴压比线性增加,对于混凝土等级C35,常规配筋率为2~5%的柱,最大轴压比为1.270-1.825之间,最大轴压比均大于1.0,最大为1.825。 采用同样的方式,我们可以获得C35~C60的柱子随着配筋率的变化最大轴压比的变化,如下图所示: 由上图可见,相同配筋率情况下,混凝土等级越大,最大轴压比越小。 将不同混凝土等级5%配筋率情况下柱的最大轴压比数据进行整理,并绘图,结果如下: 由此可见,非抗震情况下,C60柱最大轴压比为1.444,C35柱最大轴压比1.825。由于5%配筋率是一个较大的配筋率,因此,上述5%配筋率反算的柱的最大轴压比,可以认为是一个较大值。 相关博文( Related Topics) [01] [工具][软件][规范] 广东省标准《高层建筑混凝土结构设计规范》反应谱计算工具 [02] [结构力学][结构设计] 两端固支梁弯矩为0点距端部的距离 …

[反应谱][动力学][抗震] 不同阻尼比反应谱曲线的相交现象 (The Curve Intersection Phenomenon of Response Spectra with Different Damping Ratios)

实干、实践、积累、思考、创新。 采用 SPECTR反应谱分析软件 (下载链接: http://www.jdcui.com/?p=1875 ) 对几个地震波进行位移谱的求解,结果如图1~图5所示,可以发现,随着阻尼比的增大,大部分地震波在各周期范围内反应谱值减小。但是部分地震波在某些周期范围内,阻尼比增大,但是位移谱值不一定减小。 在图形上表现为不同阻尼比的反应谱曲线在某些周期范围内出现相交的现象(见图1及图3)。同样,拟加速度反应谱也存在这个现象,因为拟加速度反应谱是由位移谱转换过来的。 初看这个现象感觉很奇怪,其实仔细想也十分正常。 以图1的反应谱为例,在周期2.5s左右出现明显的相交现象。把2.5s周期各阻尼比单自由度结构的位移时程绘制出来,见图6. 由图6可见,各阻尼比下,位移时程曲线的整体趋势比较一致,该凸的地方大家一起凸起来,该凹的地方一起凹下去,即趋势是一致,但是随着阻尼比的增大,出现绝对值最大值的时间不同了。 如图,阻尼比为20%的位移最大值出现在30s左右,其他阻尼比下位移绝对值最大值出现在40s左右。且阻尼比增大到20%后绝对值比其他阻尼比在40s左右出现的绝对值大。因此不同阻尼比的反应谱曲线就出现了交点。 因此,不同阻尼比的反应谱曲线可能出现交点。因为,反应谱纵坐标是绝对值。阻尼比发生改变,可能整个响应时程的整体趋势没改变,但是最大值出现的位置会不同,大小的增大或减小规律也不同,而反应谱记录的是绝对值。 所以,千万别闭着眼睛说,阻尼比越大,位移越小。瞎说!!! 😎 😀  图 1 图 2 图3 图 4 图 5 图 6 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?!

实干、实践、积累、思考、创新。 如何有效考虑结构地震作用下的“扭转影响”?? 这个问题是源于小伙伴的一个提问: 高规4.3.2第2条和抗规5.1.1第3条,均提到了对于及刚度及质量及其不规则的结构应该计入结构双向地震下的扭转影响,其他情况下计算单向地震地震扭转效应的影响。这里说的计入“扭转影响”或者考虑“扭转影响”是什么意思?我们平时设计电算的时候考虑了扭转了吧?平时单向地震作用计算都是用了考虑扭转了吧? 这个提问引申出我们平时设计计算是如何考虑结构地震作用下的“扭转影响”??如何有效考虑结构地震作用下的“扭转影响”?? 【规范条文】 这里先摘抄一下 规范条文,《高规》4.3.2条:质量与刚度分布不对称的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用下的扭转影响。   以下尝试回答一下这个问题,关于这个提问,包含多个方面,以目前设计用的振型分解反应谱法来说,结构的“扭转效应”计算是否得到有效考虑,应该包含以下4个方面: (1)模态分析 目前我们软件的分析均是基于空间有限元分析,首先单元刚度包含了扭转刚度,采用集中质量时候模态分析也包含了扭转分量或者直接非集中质量模态分析,自然考虑了结构的空间效应,包括扭转效应。如果模态分析是最原始的一层一个质量(一个动力自由度的情况), 那这个自然是无法考虑扭转影响了,后面的因素都白搭。 (2)振型参与系数(在地震作用标准计算的层次) 在采用集中楼层质量(一个楼层包含两个或三个平动质量及扭转惯量)的情况下,当考虑扭转效应时候,地震作用标准值计算采用的振型参数系数也是包含了扭转角。可见​规范公式。 (3)振型组合 目前振型组合的时候,我们也基本默认采用的是CQC的组合方法,很少再会采用SRSS方法了。而CQC组合方法也可以说是与考虑扭转相匹配的。就是因为振型中存在平动及扭转分量的耦联,所以才需要考虑扭转振型对平动振型的贡献,相反也需要考虑平动振型对扭转振型的贡献。即各个振型之间的相互耦联影响。(当然并不是说一定是考虑扭转耦联的模态分析才能使用CQC,后面有说。) (4)双向地震 一般认为,既然有扭转效应,那双向地震作用下应该更容易激发这个扭转。因此,对于容易扭转的结构,比如规范说的质量及刚度分布不对称的结构,要加上双向地震就是这个意思。而在振型分解反应谱法上,考虑双向地震,规范要求的就是加上个双向地震方向组合即可。是否考虑扭转与双向地震没有必然联系。 因此,振型分解反应谱法的情况下,要考虑扭转效应,首先模态分析要能考虑扭转效应(即,一层至少两个平动集中质量及一个扭转惯量或者采用非集中质量进行分析),如果模态分析都无法考虑空间扭转效应,那后面的参数白搭。在模态分析考虑扭转效应的情况下,振型参与系数计算考虑扭转影响,同时振型组合采用CQC,在此基础上,可以选择是否考虑双向地震。在模态分析能考虑空间扭转的情况下,如果振型参与系数不考虑扭转影响,或者振型组合不考虑耦联(比如考虑SRSS),那扭转也无法充分考虑。或者反过来,模态分析不考虑扭转影响,而振型组合采用CQC或者要求考虑双向地震作用,这样操作似乎有些多余,前段都无耦合分析,后端在耦合自然影响小(PS.当然这个只是一般情况,如果相邻平动振型的周期比很大的话,平动振型之间也存在耦联)。这也是为何,规范在讲振型分解反应谱法的时候,扭转耦联的振型分解反应谱总是与CQC组合及双向地震扯上(如《高规》4.3.10),而讲不考虑扭转耦联的振型分解反应谱法时仅提了SRSS组合,也并不强调双向地震作用计算的原因(如《高规》4.3.9)。 PS. 可以狭隘的理解按《高规》4.3.10 进行计算即考虑了扭转影响,按《高规》4.3.9计算即没有考虑扭影响。以上是基于振型分解反应谱法的情况下说的,当然,从计算角度,最真实反应结构扭转特性的方法当然是动力时程分析。 相关内容(Related Topics) [00] [YJK][结构设计] 关于各类“刚度比”软件电算结果的详尽复核总结 [01] [抗震设计][结构规范] 规定水平力、倾覆弯矩、振型组合等电算结果的复核总结 [02] [抗震设计][结构规范] 如何有效考虑结构在地震作用下的“扭转影响”?! [03] [抗震][结构设计] …

[抗震][结构设计] 规范的各种刚度比”Ratx,Ratx1,Ratx2,RJX1,RJX3″及嵌固层

实干、实践、积累、思考、创新。 今天小伙伴拿着软件的几个参数问我“刚度比”的有关问题,那我就顺带也在博客里总结一下吧(如果有说的不对的地方,请给我指出来)。 由于国内设计,大家习惯了国内设计软件的一些表达符号,首先抄一下YJK软件的符号定义咯,如下(PKPM应该也一样。) 基本符号 Ratx,Raty : X,Y 方向本层塔侧移刚度与下一层相应塔侧移刚度的比值(剪切刚度) Ratx1,Raty1 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者 Ratx2,Raty2 : X,Y 方向本层塔侧移刚度与上一层相应塔侧移刚度90%或者150%比值。150%指嵌固层 RJX1,RJY1,RJZ1: 结构总体坐标系中塔的侧移刚度和扭转刚度(剪切刚度) RJX3,RJY3,RJZ3: 结构总体坐标系中塔的侧移刚度和扭转刚度(地震剪力与地震层间位移的比) 规范规定 以《高规》为例, 其中,Ratx1,Raty1对应的是 《高规》 3.5.2.1条 对 框架结构 的侧向刚度要求。 Ratx2,Raty2 对应的是 《高规》 3.5.2.2条 …

[科研][更新][Update] 地震动参数计算软件(GMP)更新 (支持更多数据导入格式)

经过多个网友的建议及反馈,给 GMP ( GMP: A tool for Calculating Earthquake Intensities for Seismic Analysis of Structures)  进行了更新,可以支持更多地震波数据格式的导入。 GMP是一个地震动参数计算工具,支持以下功能(1)地震波基线修正(2)地震波积分(3)地震波反应谱计算(4)地震波参数计算,一共支持46个常用和非常用参数的计算。 关于GMP的详细信息可以访问这个网页:[软件][地震动参数][Tool] GMP: 结构抗震分析地震动强度指标计算工具 ( GMP: A tool for Calculating Earthquake Intensities for Seismic …

[结构设计] 外框剪力分担比的作用

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 从规范而言,主要有以下两点: (1)判断外框刚度是否满足二道防线。虽然不一定什么结构体系都那么合理适用,但最初的初衷就是想确保框架不至于太弱,在地震下能够有二道防线。 (2)用于进行0.2V0调整。进行框-剪结构的抗震设计。主要是抗震设计里面的的概念。 注释 ( Comments )   ( 如果您发现有错误,欢迎批评指正。邮箱:jidong_cui@163.com . 如果您喜欢这篇博文,请在上面给我 点个赞 吧! 🙂   🙂      ( If you found any mistakes in the post, please let me know. Email : jidong_cui@163.com. If you like this posts, please give …

[软件][地震工程] GMP v2018: 结构抗震分析地震动强度指标计算工具 ( GMP: A tool for Calculating Earthquake Intensities for Seismic Analysis of Structures)

新版软件已发布,移步这个页面:[软件][地震动][更新] GMP v2024: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具] 网友让写的工具,地震动参数计算工具。PS. “山竹”来狂风暴雨,也无法阻止我。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 地震动参数计算工具,总共提供 46 个参数的计算。详见后面的介绍。 程序界面 ( Program …

[论文][Paper] 基于构件变形的框支剪力墙结构抗震性能评估

基于构件变形的框支剪力墙结构抗震性能评估(Seismic performance evaluation of frame-supported shear wall structures based on component deformation)提出一套框支剪力墙结构抗震的安全性评估原则,用于评估按照中国现行规范设计的一系列框支剪力墙结构模型.通过罕遇地震作用下弹塑性时程分析,获取结构及构件的变形和内力,采用基于变形指标的性能评估方法来评估结构各构件在大震下的破坏情况,分析结构的整体安全性及各构件的性能分布情况.结果表明:框支剪力墙结构的薄弱层位于转换层以上一层,而薄弱层的框支剪力墙容易发生剪切破坏;用现行规范大震下薄弱层层间弹塑性位移角无法准确评估框支剪力墙结构的性能.

[论文][Paper]基于变形的框架-剪力墙结构抗震安全性评估

将结构整体变形和构件变形作为双重控制指标,提出了罕遇地震作用下结构的安全性评估方法,对按GB 50011—2010《建筑抗震设计规范》设计的典型框架-剪力墙结构在罕遇地震作用下的安全性进行评估。结果表明:以层间位移角作为大震性能评估的唯一标准存在不足,结构的最大层间位移角与结构构件损伤没有直接关系,统计得出框架-剪力墙结构首层层间位移角限值为1/200;引入长周期反应谱影响系数以考虑地震波反应谱形状的影响,并给出建议影响系数取值为0.9~1.05;Ⅱ类~Ⅳ类场地土中7度及7.5度抗震设防的模型均满足安全性要求,8度设防出现个别模型不满足安全性要求。

[Tool][软件][动力学]NSDOF v2016: A Tool for Nonlinear Dynamic Analysis of SDOF System (NSDOF: 单自由度系统动力非线性分析工具)

SDOF是一个基于微软的windows窗口程序,用于单自由度结构的动力非线性分析。结构可是弹性也可以是弹塑性。动力荷载可以是施加在结构基座的地震加速度,也可以是施加在结构顶部的动力荷载。程序使用逐步积分法求解增量非线性运动方程。SDOF is a Microsoft Windows based application for the dynamic analysis of single degree of freedom structural systems. The structure may be modeled as elastic, elastic-plastic. The dynamic loading may be input as an earthquake accelerogram acting at the base of the structure, or as a dynamic force applied at the roof of the structure. The program uses a step-by-step method to solve the incrementally nonlinear equations of motion.