[Dynamics][动力学][SAP2000] 梁的振动形态及振型质量 (Vibration Modes and Modal Mass of Beams)

实干、实践、积累、思考、创新。 最近研究舒适度,做些算例测算。对两端铰接、两端固接、一端固接一端铰接、悬臂等截面梁进行振型分析,获得各类梁的前三阶振型,并对振型向量进行最大位移值归一化,并利用归一化后的振型向量求解前3阶振型的振型质量。测试算例梁截面统一为,梁截面为200X200,梁长度为1000mm,沿梁长划分80个单元,振型的质量通过公式  \({M_n} = \int_0^L {m(x)\phi _n^2(x)dx} \) 进行计算。 1 简支梁 1.1 振型形状 一阶振型 二阶振型 三阶振型 1.2 振型质量 振型 节点质量 总质量 振型质量 振型质量/总质量 1 0.0009815 0.314 0.1570 0.500 2 0.0009815 …

[Dynamics][动力学] 振型向量归一是否对计算结果有影响?

坚持实干、坚持积累、坚持思考,坚持创新。 题目如题,结论肯定是没有影响的,因为振型向量本来就是不定的,振型元素之间只有相对关系,要求解振型向量元素的具体值,必须对振型向量进行标准化。简单说即先假定某个元素的值,然后才能求解出其余元素的值。 最近在研究舒适度,顺便把相关东西整理一下,正好还有小伙伴问,同时正好测试一下在网站上用LATEX写公式,看看是不是会专业点。 基本公式 结构的运动方程: \[[M]\{ \ddot u\} + [C]\{ \dot u\} + [K]\{ u\} = \{ P\}  (公式1) \] 将位移向量\(\{ u\} \) 用振型展开, \[\{ u\} = [\phi ]\{ q\} …

[动力学][Dynamics][SAP2000] SAP2000中振型向量的标准化方法

实干、实践、积累、思考、创新。 最近研究舒适度,涉及振型向量的标准化,顺便测试一下SAP2000默认的振型向量标准化方法。 大家都知道,振型向量是不定的,振型向量的参数之间只有比值关系。为了求解振型向量的元素绝对值,必须对振型向量进行标准化。 我们接下来测试SAP2000中振型向量的标准化方法,在SAP2000中建立一根简支梁模型,如下图: 梁的前三阶Z向振型形状如下: 振型形状是与理论分析结果一样的。 将软件输出的振型变形的平方乘以节点质量,可获得各振型的广义质量,结果均为1。即SAP2000默认输出的振型是满足关于质量矩阵内积为1的条件的。即采用的是关于质量矩阵的正交归一化方法。 相关博文( Related Posts ) [01] [Structural Dynamics][Mode superposition] 振型参与质量系数(Participating Mass Ratio) [02] [动力学][振型分解][Mode Superposition] 振型向量与振型参与系数的乘积公式推导 [03] [结构设计][地震作用][规范] 振型分解反应谱法的一些概念总结 (Basic Concepts of Response Spectra …

[选波][地震波][工程] 某大跨结构的地震波选取(GMS选波系统-选波应用案例23)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个大跨结构的选波案例。 结构设防烈度为 7度 0.10g,设计地震分组一组,场地类别为 II 类。 前三阶周期主要分布在3~4s。由于是大跨空间结构,需要进行三向地震波的选取。 采用GMS系统选波,如下: 对于这类结构而已,结构的影子周期不仅仅是前三周期,从下面三个方向的有效质量参与系数可以看到,结构在前300阶周期范围内,累计有效质量参与系数依然有较大幅度的增加。 此外,对于需要进行多点激励分析的结构,地震波需要进行基线修正。 所选地震波主方向反应谱与规范反应谱的对比情况如下图: 相关案例 ( Related Examples) [01]. [工程][选波][地震波] 某超高层选波案例(GMS选波系统-选波应用案例1) [02]. [工程][选波][地震波] 某框筒高层建筑结构选波案例(GMS选波系统-选波应用案例2) [03]. [工程][选波][地震波] 某多层框剪建筑结构(短周期)选波案例(GMS选波系统-选波应用案例3) [04]. [工程][选波][地震波] 某钢筋混凝土框架-核心筒高层建筑结构选波案例(GMS选波系统-选波应用案例4) [05]. [工程][选波][地震波] 某大底盘-多塔-高位连体高层建筑结构选波案例(GMS选波系统-选波应用案例5) [06]. [工程][选波][地震波] 某8度区大底盘-多塔高层建筑结构选波案例(GMS选波系统-选波应用案例6) [07]. [工程][选波][地震波] …

[地震][动力学][Dynamics][MATLAB] 将阻尼矩阵的非对角线元素取为0计算结果会怎么样?

实干、实践、积累、思考、创新。 如题,一看是一个莫名其妙的想法。实际上也是一个错误的想法,不过,当时脑子一热,就测算一下。具体看看结果。 模型: 20层的剪切层模型。 阻尼矩阵: (1)模态阻尼,20阶振型计算 (2)模态阻尼,20阶振型计算,把非对角线元素取为0。 采用MATLAB编程,采用Newmark-β积分法进行弹性时程分析,两种阻尼模型的计算结果对比如下。 其中,参考阻尼为完整的模态阻尼,对比阻尼为去掉阻尼矩阵对角线元素后的矩阵。 由图可见,采用仅保留对角线元素的阻尼矩阵,结构的位移及剪力响应远小于完整的阻尼矩阵,而楼层加速度响应似乎相差不大!!十分诧异!! 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[抗震][减震][笔记] 黏弹性阻尼器的减震性能曲线 Response Reduction Curve of Viscoelastic (VE) System

实干、实践、积累、思考、创新。 学习减隔震知识,研究各类阻尼器的减震性能曲线。做个笔记。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[地震波][选波][教程] 时程分析地震波选波介绍 (Introduction of Seismic Wave Selection in Time History Analysis)

实干、实践、积累、思考、创新。 记得是很久之前,小伙伴让我整理的选波教程。最近整理电脑发现,就整理到网站上吧,写得比较精简,有需要的可以参考一下。 时程分析选波教程 选波,简单来说,就是选取与场地特性符合的地震波进行时程分析。结构的场地特性包括很多,其中目标反应谱算是一个比较综合的特性也是与结构设计最紧密相关的一个特性。因此,目前选波可以狭隘的理解为选取与目标反应谱吻合的地震波。当然,实际上并不仅仅是这条,只是这条会最为重要。以下简单说说一般情况下的选波流程及几个与选波有关的话题。 选波基本流程 选波过程主要包括 5 步: (1)确定结构基本参数 (2)确定设防烈度、地震分组,场地土类别等主要参数 (3)确定需要匹配的目标反应谱 (4)确定需要控制的其他参数 (5)筛选与目标反应谱匹配且与控制参数吻合的地震波 就这样选波就完成了。 结构的基本参数 与选波相关的最主要的结构基本参数是,结构的前三阶周期,第一阶周期最主要。因为地震波很难整个反应谱范围均与目标反应谱吻合,因此一般均是控制结构主要周期范围内地震波反应谱与目标反应谱不要相差过大。 确定设防烈度、地震分组,场地土类别等主要参数 这些参数列出来,主要是这些参数与目标反应谱的确定有关。 确定目标反应谱 以中国规范为例,如下图,反应谱的确定与设防烈度,场地类别,地震分组有关。如果是选用其他国家的反应谱,那就按其他国家的规范要求来指定。 对于中国反应谱,可以在 www.jdcui.com 下载  [软件][规范]GB-SPECT: Chinese Code’s Design Response Spectrum[中国规范反应谱生成程序] GB-SPECT …

[地震][动力学] 对称结构的地震剪力规律 (Seismic Shear Law of Symmetrical Structures)

实干、实践、积累、思考、创新。 来自小伙伴 刘骥 的分享。这个是继《 [抗震][动力学] 对于整体结构,X向地震作用下有Y向剪力吗?有!! 》后对对称结构进行的简单测试。直接看测试结果吧。 算例1: 算例2: 可见,剪力作为矢量,是满足平行四边形法则的。同时,对于对称结构,往哪个方向输入地震加速度,总剪力均一致。 相关博文 ( Related Topics) [01] [地震][动力学] 对称结构的地震剪力规律 [02] [地震][结构] 双向地震作用效应,【先振型组合,再方向组合】及【先方向组合再方向组合】的差异?(实际案例测算) [03] [地震计算][反应谱][动力学][CQC] 振型叠加法随着组合振型数量的增加各种响应量是怎么变化的? [04] [抗震][动力学] 对于整体结构,X向地震作用下有Y向剪力吗?有!! 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[抗震][动力学] 对于整体结构,X向地震作用下有Y向剪力吗?有!!

实干、实践、积累、思考、创新。 对于整体结构,X向地震作用下,结构有Y向的剪力吗?以下通过两个简单的时程分析案例进行测算。 案例1: 振型结果如下: 振型1为Y向平动 振型2为X向平动 振型3为绕Z轴扭转 案例2:案例1模型逆时针旋转45度 周期值与模型1是一样的,只是因为结构转了一个角度,振型方向不同了。 振型1为135度方向平动 振型2为45度方向平动 振型3为绕Z轴的扭转 分别对两个模型沿X向施加地震动加速度时程,进行直接积分动力时程分析。所选的地震波如下图所示。 模型1沿X方向与Y方向的基底剪力结果如下图所示。由图可知,对于模型1,沿X向输入地震,Y向剪力几乎为0。 模型2沿X方向与Y方向的基底剪力结果如下图所示。由图可知,对于模型2,沿X方向输入地震,结果Y向会产生剪力,且剪力大小不可忽略。 粗看似乎有点难理解,外力和内力不是应该平衡的吗?为何施加X方向加速度,结构有Y向的剪力?对于静力情况下,结构受到到的外力与的内力平衡,比如,当沿结构X方向施加力F时,结构总的剪力必然是沿X方向,且大小为F,Y方向不存在剪力。为何到了动力情况,就不满足这个规律了?不妨看一下两种情况下结构的平衡方程。 结构静力平衡方程: 其中,为结构的外力,为结构的抗力,其中,当只有X向力作用时,即 ,,即结构的抗力也只有X反向的力,y及z向的力为0   结构动力平衡方程(地震): 其中,当只有x向地震时,,即向量在非X向自由度上为0,此时结构的抗力,假设忽略阻尼,结构的抗力为,对比静力平衡下的公式()可见,尽管向量在非X向自由度上为0,但是抗力的右边项不是,而是,即所谓的绝对加速度,其中相对加速度在非X向自由度上不一定为0,当在非X向自由度上存在非0值时,抗力就可以能存在非X向自由度上的力,即对于整体结构,X向地震作用下,结构整体在其他方向也可能存在抗力,包括Y向的剪力。 对于算例1,在X向地震加速度作用下,由于结构基本只有X向的位移,因此Y向的抗力很小,进而Y向剪力很小。对于案例2,由于结构扭转了45度,在X向地震加速度作用下,结构不仅有X向的位移,也有Y向的位移,有Y向的位移,就可能有Y向的抗力及Y向剪力。 由以上分析也可发现,引起动力与静力概念上不同的错觉的原因是,把动力情况下结构的抗力当成了,实际上动力情况下结构的抗力等于(忽略阻尼情况下)。 平衡还是满足的!!!。 相关博文 ( Related Topics) [01] …

[振动台][试验][软件] 振动台(Shaking Table Test)白噪声试验数据处理——求结构自振特性

实干、实践、积累、思考、创新。 小伙伴问,振动台试验如何获得结构的自振特性。提取了振动台试验的数据,如何进行处理。 结构进行地震振动台试验前,均会进行结构动力特性试验。 自振特性的测试有很多种方法,如自由振动法、正弦波扫频法,白噪声扫频法。 其中白噪声扫频法的大概意思是,将模型安装在振动台后,进行地震波加载前,在振动台上输入小振幅的白噪声,进行激振试验,测量台面和结构的加速度反应。通过传递函数、功率谱等频谱分析方法,获得结构模型的自振频率、阻尼比、振型等参数。 于是小伙伴随手扔来一个白噪声扫频后测点的响应结果,按上面的思路,试试处理一下。 将测点响应导入本站的 FOUR_TRAN ( [数学][地震动][软件] FOUR_TRAN: Fourier Analysis Tool [傅里叶分析工具] ) 软件,并进行傅里叶分析 (Fourier Analysis),如下图: 可以发现在频率3~3.5Hz位置,幅值谱很大。该位置很可能就是结构的基频。 将数据导出,并进一步导入本站的DataSmoothing ( [工具][试验][编程] DataSmoothing: A Program for Data Smoothing [试验数据曲线平滑+降噪工具] )软件,进行平滑处理。如下图所示: 可以较为清晰的看到结构的基频在3.2HZ左右,其他凸起是结构的其他阶频率。 …

[地震][结构] 双向地震作用效应,【先振型组合,再方向组合】及【先方向组合再方向组合】的差异?(实际案例测算)

实干、实践、积累、思考、创新。 近日许多公众号分享了王亚勇大师提出的双向地震作用算法,许多群都进行了讨论。抱着好奇心,趁热打铁,这里也对这块内容做个测算研究。振型分解反应谱法,在计算双向地震作用时,涉及振型组合及方向组合。对于双向地震作用效应,我们是先振型组合,再方向组合?还是先方向组合,再振型组合?不同的组合顺序对结果有什么影响?以下通过算例做些探索。 1.1 测算目的 (1)了解振型分解反应谱法双向地震作用计算时,【先振型组合、再方向组合】与【先方向组合,再振型组合】的差异。先振型组合、再方向组合的结果大,还是先方向组合,再振型组合的结果大。 (2)测算王大师提出的双向地震作用计算方法与目前规范的双向地震作用计算方法的差异。这里贴一下王大师提出的算法的公式。原文见: 1.2 测算说明 (1)振型组合方式主要有SRSS方法、CQC方法和ABS法等。本文测算时,不管是【先振型组合、再方向组合】还是【先方向组合,再振型组合】,振型组合统一按CQC组合,这也是规范建议的方法。 (2)对于方向组合,考虑两种情况进行测算,分别是SRSS组合及ABS组合。对于SRSS及ABS组合,次方向的效应折减均取0.85。则,王大师建议的方法即,先方向组合,后振型组合,且方向组合采用ABS组合的方法。规范方法为,先振型租后,后方向组合,且方向组合采用SRSS组合的方法。 (3)测算的效应。由于王大师的ppt对新旧方法构件层次的内力响效应给出了较多例子。这里主要测算结构的宏观效应:楼层剪力及扭矩(累积扭矩)。结构的楼层剪力及累积扭矩值也是一种效应。 (4)测算的算法 假定,Sj(x),Sj(y)分别为X向及Y向单向地震作用下振型分解反应谱法获得的结构的地震效效应。对于本文的测算,指的是结构的楼层剪力或累积扭矩。 A.对于先振型组合,后方向组合,方向组合采用SRSS组合的验算过程: Step1:进行CQC振型组合,获得的两个方向地震作用振型组合后的效应S(x)及S(y) 其中, Step2: 进行SRSS方向组合,获得的X向为主方向及Y向为主方向的地震作用效应S(EX0.85EY)及S(EY0.85EX)。其中S(EX0.85EY) = sqrt( S(x)*S(x)+0.85*0.85*S(y)*S(y)) B.对于先方向组合,后振型组合,方向组合采用SRSS组合的验算过程: Step1:先进行SRSS方向组合,X方向为主方向的地震效应为Sjmx =sqrt( Sj(x)*Sj(x)+0.85*0.85*Sj(y)*Sj(y));Y方向为主方向的地震效应为Sjmy =sqrt(0.85*0.85* Sj(x)*Sj(x)+Sj(y)*Sj(y)) Step2:分别对Sjmx 及Sjmy 进行CQC振型组合,获得的X向为主方向及Y向为主方向的地震作用效应,同样命名为S(EX0.85EY)及S(EY0.85EX),其中, …

[地震工程][抗震][规范] 对抗规反应谱的速度段、位移段按理论规律调整,反应谱会变成什么样?

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 抗规反应谱如下图, 其中: 假定0~Tg为加速度控制段,Tg~5Tg为速度段,5Tg以上为位移控制段,则速度段衰减指数取为了0.9,即T-0.9衰减而不是按T-1衰减,可见γ的公式。 位移段则是在5Tg处按斜率η1直线衰减,而不是按理论的T-2衰减。 假定按对抗规反应谱的速度段、位移段按理论规律调整,反应谱会变成什么样? 以7度0.1g,III类场地大震下的反应谱为例,调整前后的反应谱结果如下图所示。 由上图可见,考虑速度段及位移段分别按T的-1次方及-2次方修正后,加速度显著减小,尤其是5Tg后,加速度衰减很快,周期大于3s后,修正反应谱不到规范反应谱的一半。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[结构][抗震] YJK中Ritz向量法模态分析需要注意的一些地方

实干、实践、积累、思考、创新。 测试模型发现,用Ritz向量法算模态,会出现这样的问题: (1)模态数量默认是3的倍数,不管输入计算模态阶数是多少阶,实际计算的模态数量都是3的倍数,比如输入计算2个模态,实际会计算3个模态,可能认为这样会精度高一点。 (2)计算模态阶数不同,实际算出来同阶模态是可能不同的,振型形状及周期都不同,原本第三阶周期都是扭转的了,但仅算3阶及6阶模态时,第三阶为平动了。这个有点迷了。。。。。。不知道是不是内部存在什么排序,毕竟存在迭代。但仅算3阶及6阶模态时第3阶平动对应的振型及周期在算30阶模态的振型上似乎也没找到对应。 不过,以上只是测试,如果实际输入正常的模态数量。应该是没问题的。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[Tool][软件][Update] PPPSP V2020: Pushover Performance Point Solution Program [Pushover 分析性能点求解程序][Based on FEMA 440]

实干、实践、积累、思考、创新。 7月拖到现在11月,终于可以更新了...... 程序图标 ( Program Icon )        程序介绍 ( Program Introduction) 基于FEMA 440等效线性化法 Pushover分析方法 的性能点求解程序。( A program for the Solution of Pushover Performance Point based on FEMA 440 Equivalent …

[软件][Tool][设计] YJK_ModePost: 盈建科模态数据分析工具

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) YJK_ModePost: 盈建科模态数据分析工具。基于YJK的分析结果,可以校核CQC振型分解法的计算,查看各个振型的地震力,剪力,扭矩倾覆弯矩,可以选择指定的振型进行振型组合,查看振型组合对各类响应的影响。 程序界面 ( Program Interface ) 相关软件 ( Related Program ) [01] ENGT: Engineering Toolkit [建筑结构辅助设计工具集成系统] [02] [风洞试验][结构设计][软件] RWDI风洞试验荷载数据处理工具 [03] [结构设计][软件][Program] YJK风洞荷载试验数据处理工具[ A Program …

[地震计算][反应谱][动力学][CQC] 振型叠加法随着组合振型数量的增加各种响应量是怎么变化的?

实干、实践、积累、思考、创新。 以YJK模型的振型分析结果,分析采用CQC法进行振型组合的情况下,随着CQC组合振型数量的增加,结构基底响应的变化规律。 结果如下图所示。 X向地震作用下 X向基底剪力 X向地震作用下 Y向基底剪力 X向地震作用下 绕Z轴的扭矩 X向地震作用下 X向倾覆弯矩 X向地震作用下Y向倾覆弯矩 X向地震作用下,随着CQC组合的振型数量的增加,X向基底剪力不断增大,倾覆弯矩也一样的规律,但是 Y向的基底剪力及倾覆弯矩规律则不然,随着组合模态数量的增加,Y向剪力是先减小,然后逐步稳定略带波动。 相关话题 ( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion …

[ETABS] ETABS警告”THE STRUCTURE IS UNSTABLE OR ILL-CONDITIONED!!”

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 提示报错。出现这种错误的可能软件提示以下几种可能: – INADEQUATE SUPPORT CONDITIONS, OR 支座约束条件不足 – ONE OR MORE INTERNAL MECHANISMS, OR 存在机构 – ZERO OR NEGATIVE STIFFNESS PROPERTIES, OR 刚度为0或者负刚度 – EXTREMELY LARGE STIFFNESS PROPERTIES, OR …

[动力学][Structure Dynamics] 线性增加刚度K与质量M下单自由度(SDOF)结构的周期变化

坚持实干、坚持一线、坚持积累、坚持思考,坚持创新。 单自由度体系,线性增加刚度K与质量M,结构周期的变化规律。 现性递增k与m 单自由度结构的周期变化关系:周期可增可减,与k、m各自增幅有关、即 k/m有关。增、减构件类似在原有基础上递增k、m,如果原先K、M的基数已经很大,曲线已经在平滑段,简单线性增减对周期结果影响小。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[反应谱][动力学][抗震] 不同阻尼比反应谱曲线的相交现象 (The Curve Intersection Phenomenon of Response Spectra with Different Damping Ratios)

实干、实践、积累、思考、创新。 采用 SPECTR反应谱分析软件 (下载链接: http://www.jdcui.com/?p=1875 ) 对几个地震波进行位移谱的求解,结果如图1~图5所示,可以发现,随着阻尼比的增大,大部分地震波在各周期范围内反应谱值减小。但是部分地震波在某些周期范围内,阻尼比增大,但是位移谱值不一定减小。 在图形上表现为不同阻尼比的反应谱曲线在某些周期范围内出现相交的现象(见图1及图3)。同样,拟加速度反应谱也存在这个现象,因为拟加速度反应谱是由位移谱转换过来的。 初看这个现象感觉很奇怪,其实仔细想也十分正常。 以图1的反应谱为例,在周期2.5s左右出现明显的相交现象。把2.5s周期各阻尼比单自由度结构的位移时程绘制出来,见图6. 由图6可见,各阻尼比下,位移时程曲线的整体趋势比较一致,该凸的地方大家一起凸起来,该凹的地方一起凹下去,即趋势是一致,但是随着阻尼比的增大,出现绝对值最大值的时间不同了。 如图,阻尼比为20%的位移最大值出现在30s左右,其他阻尼比下位移绝对值最大值出现在40s左右。且阻尼比增大到20%后绝对值比其他阻尼比在40s左右出现的绝对值大。因此不同阻尼比的反应谱曲线就出现了交点。 因此,不同阻尼比的反应谱曲线可能出现交点。因为,反应谱纵坐标是绝对值。阻尼比发生改变,可能整个响应时程的整体趋势没改变,但是最大值出现的位置会不同,大小的增大或减小规律也不同,而反应谱记录的是绝对值。 所以,千万别闭着眼睛说,阻尼比越大,位移越小。瞎说!!! 😎 😀  图 1 图 2 图3 图 4 图 5 图 6 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[选波][地震波][科研] 隔震结构波选波案例3(GMS选波系统-选波应用案例22)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个隔震结构选波案例。 选波基本信息: 设防烈度 8度0.2g 加速度峰值cm/s2 600 地震影响系数最大值 1.35 特征周期Tg/s 0.55 第一周期 第二周期 第三周期 隔震前 1.435 1.43 1.316 隔震(中震) 3.152 3.147 2.914 隔震(大震) 3.548 3.542 3.332 隔震(极大震) 3.625 3.619 …

[软件][地震动][Update] GMP v2020: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具]

新版软件已发布,移步这个页面:[软件][地震动][更新] GMP v2024: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具] 实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) 根据小伙伴的建议与要求,更新 GMP地震动参数计算软件 (1)更新了界面的友好性 (2)增加了两个参数目前一共支持48个参数了, (3)增加了批量分析功能 下面逐个介绍。 …

[选波][地震波][科研] 近场地震动波选波案例(GMS选波系统-选波应用案例21)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的一个选波案例,帮助小伙伴选波进行近断层(Near-fault earthquake motions)相关的结构抗震研究。 基本选波参数。 (1)抗震设防烈度8度,二类场地,设计地震分组第一组(特征周期0.35),阻尼比0.05。 结构前三阶周期 1.5199、0.2614、0.2279。 (2)选波说明,按我国抗规,峰值加速调整为70cm/s2,对应为0.07143g,其中g为重力加速度,1g = 980cm/s2 (3)人工波的时间间隔为0.02s,加速度单位为cm/s2,加速度峰值为70cm/s2 (4)近场通过控制地震波的断层距来控制,所选的天然波断层距不大于20km (5)天然波的时间间隔看具体的地震波,加速度单位为g,加速度峰值为0.07143g。 选波结果: 反应谱 地震波参数 相关案例 ( Related Examples) [01]. [工程][选波][地震波] 某超高层选波案例(GMS选波系统-选波应用案例1) [02]. [工程][选波][地震波] 某框筒高层建筑结构选波案例(GMS选波系统-选波应用案例2) [03]. [工程][选波][地震波] 某多层框剪建筑结构(短周期)选波案例(GMS选波系统-选波应用案例3) [04]. [工程][选波][地震波] 某钢筋混凝土框架-核心筒高层建筑结构选波案例(GMS选波系统-选波应用案例4) …

[地震工程][科研][软件] IRSA 2020: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具)

软件已更新,新版请移步:[软件][地震工程][科研][更新] IRSA 2022: Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具) 实干、实践、积累、思考、创新。 小伙伴让做的一个小工具,主要用于进行地震波弹塑性反应谱的计算及单自由度非线性分析计算。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) IRAS:Inelastic Response Spectra Analysis Program (弹塑性反应谱及单自由度非线性地震分析工具)。 具体包含以下功能: (1)地震波基线修正(Baseline correction) (2)地震波积分 ( Integration) …