[优化][编程] 基于SAP2000二次开发的平面桁架优化案例 (Optimization of plane truss structure through secondary development of SAP2000)

实干、实践、积累、思考、创新。 实际超高层工程案例中,外框常采用交叉支撑/交叉网格等形式加强外框刚度以形成强外框体系,例如深圳中信金融中心、深圳华润总部大厦、广州西塔等。为了初步探究交叉支撑点位置对外框刚度影响,基于简化平面模型以及SAP2000二次开发技术,采用枚举法对不同交叉点位置的桁架进行计算,以供参考。 1、平面桁架的简化模型 外框交叉支撑通常呈现疏密表现形式,简化模型通过可选交叉点位置大于交叉点道数模拟,各层水平荷载采用某项目指定风荷载。 表 平面桁架构件尺寸: 柱 方钢管2000X2000X100X100 梁/支撑 方钢管1200X800X60X60 2、SAP2000二次开发技术+简化模型 SAP2000的API功能是以程序语言的形式与SAP2000相结合,实现建模、分析、结果输入输出的智能化,它使得用户可以通过编译好的程序自动建立、分析模型并获得指定的分析和设计结果,用户可用另一种程序和SAP2000通过API接口相结合实现互动。本文通过SAP2000二次开发技术对所有枚举桁架方案进行内力分析,输出桁架顶点位移,以此作为整体刚度判定标准。 桁架交叉点位置变化视频 3、计算结果 基于简化模型和二次开发技术,将桁架顶点位移作为整体刚度判定标准,以下给出顶点位移从小至大的桁架方案结果 本文编者介绍 相关资料 ( Related Topics ) [01] [CSI OAPI][编程] CSI OAPI EX1: 运行/关闭/捕捉 SAP2000 [Start/Exit/GetActive SAP2000] [02] …

[视频][Video] 基于ESO的拓扑优化 案例1 (Python编程) ESO based topology optimization Example 1(Python programming)

实干、实践、积累、思考、创新。 ESO拓扑优化,Python编程,视频。 相关资料 ( Related Topics ) [01] [CSI OAPI][编程] CSI OAPI EX1: 运行/关闭/捕捉 SAP2000 [Start/Exit/GetActive SAP2000] [02] [CSI OAPI][编程] CSI OAPI EX2: 伸臂桁架几何优化 [Geometric optimization of outrigger truss] [03] [CSI OAPI][编程] …

[动力学][结构] 大震弹塑性顶点位移时程为何”不收敛”?[Why does the displacement time history of earthquake elastic-plastic analysis not converge?]

实干、实践、积累、思考、创新。 经常碰到小伙伴做完大震弹塑性分析后,跑过来问为何结构顶点位移总是不收敛? 怎么个不收敛法?大家看看下面这个图: 上述两组图中,上方的是结构某主方向的地面加速度(总时间110s),下方的是结构对应方向的顶点位移时程曲线(算到60s)。 由图可见:其中地面峰值加速出现在30~40s,在60s时地面加速度已退化为峰值的30%以上,而结构顶点位移算到60s依然不减衰减。地面加速度衰减速度很快,加速度峰值明显靠前,而顶点位移似乎还没出现峰值,看起来“发散”。为何加速度已经显著退化,而位移还没收敛? 最初看到这类曲线的时候,也很诧异?后面思考后发现,之所以会存在这种诧异,是因为我们对比的基准选错了。 上面的例子中,我们拿结构的顶点位移时程和地面加速度进行对比?实际上,加速度和位移之间差了两次积分,加速度峰值和位移峰值并不一定出现在同时刻,两者本身可以差很大。 对比结构顶点位移时程的趋势参照地面的位移时程更直观,而不是参照地面加速度时程。位移与位移对比才直接。 以上图中的加速度为例,我们对加速度进行积分,获得对应速度与位移时程,结果如下图所示。 由上图可见,X向和Y向的地面加速度时程峰值分别出现在30s和40s左右,而对应的位移时程峰值分别出现在50s和55s,足足推后了15~20s左右。 从这个角度来看,顶点位移要出现明显退化,加速度应该算到60s,甚至可能更多。为此我们把弹塑性分析时间直接设置为110s的时间,再次提取顶点位移时程结果,如下图所示。 有上图可见,在60s后,两个方向的顶点位移均开始出现不同程度的退化。由于我们通常进行的是一致地震激励计算,因此超限报告中,往往只给出加速度时程曲线,并没有提供地面位移时程曲线,让人很自然地采用地面加速度时程对比顶点位移时程进行参照,从而引起了上述诧异。 有了这样的发现,我们不妨找几组天然地震记录进行积分计算,看看这些地震加速度时程曲线的“显著退化点”和地面位移时程曲线的“显著退化点”出现的位置情况。 这里曲线的“显著退化点”定义为曲线正向最大值和负向最大值中靠后出现的那个。 由上述多组图可见: (1)地面加速度时程曲线的抖动程度最大,经过二次积分后得到的位移时程曲线变得平缓,速度时程曲线的抖动程度次之。 (2)地面加速度、速度、位移曲线的“显著退化点”出现位置不同,三个曲线的“显著退化点”出现的位置先后关系不定,但从选取的几组天然地震波的分析结果来看,速度时程曲线和加速度时程曲线的“显著退化点”相对较为接近,而地面位移时程曲线的“显著退化点”与加速度时程曲线的“显著退化点”可能相差较远,且位移曲线的“显著退化点”更靠后。 (3)对比结构顶点位移时程的趋势参照地面的位移时程更直观,而不是参照地面加速度时程。 相关博文( Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis …

[软件][编程][研究] CASD: Calculate Average and Standard Deviation Curves [平均与标准偏差曲线计算工具]

实干、实践、积累、思考、创新。 程序图标 ( Icon ) 程序介绍 ( Introduction) 小伙伴建议下编写的一个小工具,其主要功能是求解平均与标准偏差谱曲线。用户可以导入一组曲线,程序自动求解平均曲线与指定倍数标准偏差的偏差曲线。 程序可考虑正态分布和对数正态分布模型进行评估,并可将分析结果保存为文本文件或者直接输出EXCEL图表。 The basic function of the program is to calculate the average and standard deviation curves. The program can consider Normal distribution and …

[midas Gen] Gen施工阶段分析 测算案例1——模拟施工3 ( midas Gen Construction Stage Analysis EX1- Simulation Construction 3)

实干、实践、积累、思考、创新。 测算GEN的施工阶段分析功能,实现YJK的模拟施工加载3,并与YJK计算结果对比。 1. YJK模型 测试的YJK模型如下图,7层2X2的小框架,刚性隔板,恒载按 施工模拟3 加载。 2. GEN模型 3. GEN参数设置 采用YJK接口转模型到GEN,并在GEN进行施工模拟参数设置。 对于这个例子,仅考虑施工加载,不考虑混凝土材料的收缩徐变等,即不考虑时效性。 GEN中进行施工阶段分析,主要是通过 结构组、荷载组、边界组,施工阶段等的定义来实现。 对于这个例子,有7层,需要定义7个 施工阶段、7个结构组、7个荷载组及7个边界组。 需要特别注意的是 (1)结构自重需要设置在第一个荷载子组,并保持在后续施工阶段中激活,软件会在构件激活的时候自动考虑其自重。 (2)考虑施工加载的工况最好在荷载工况里面指定为“施工阶段荷载(CS)”,否则在PostCS中会重复出现该工况,并且该工况的分析结果是按一次性加载计算的。 4. 结果对比 (1)振型结果 (2)恒载节点竖向位移 (3)恒载中柱竖向位移曲线 可见,对于这个算例,YJK的结果与Gen的结果是一致的。 Gen施工阶段分析功能更加强大,基本上可以考虑任何形式的施工阶段设置,同时可以考虑混凝土的收缩和徐变。 YJK主要通过指定构件施工顺序的方式来设置施工模拟,对于构件关联的荷载如何加载,楼板单元的形成顺序等都没办法人为干涉,同时YJK暂无法考虑混凝土的收缩和徐变等时变效应。 PS. Gen的施工阶段分析功能强大,这个例子仅测试了最基本的功能和操作,其他更复杂的功能和参数有待下一步测试。 …

[CSI OAPI][编程] CSI OAPI EX2: 基于虚功原理的伸臂桁架几何优化 [Geometric optimization of outrigger truss based on the principle of virtual work]

实干、实践、积累、思考、创新。 CSI API编程训练第二课,这次做一个基于虚功原理的伸臂桁架几何优化,主要训练如何通过编程控制SAP2000修改节点位置,自动提交计算分析,并提取构件的内力等。 对于桁架结构,根据虚功原理,结合单位荷载法可知,结构任意一点在指定方向的位移可按以下公式表示: $${\Delta = \sum {\int {\frac{{n{F_N}}}{{EA}}} } {\rm{ds}} = \sum {\frac{{n{F_N}L}}{{EA}}} }$$ 其中,\(n\)为杆件的虚拟轴力,\({F_N}\)为杆件的真实轴力,\(E\)为杆件的弹性模量,\(A\)为杆件的截面面积,\(L\)为杆件的长度。 根据Baker的研究可知,对于静定桁架结构,各杆件处于等应力状态时,结构杆件是最优的。这个最优说的是,对于给定挠度,当所有杆件均处于等应力状态时,所需结构材料用量最小;或者说对于给定材料用量的结构,当所有杆件均处于等应力状态时,结构挠度最小。 假设各杆件的应力水平均达到同一个值,设为\(e = \frac{{{F_N}}}{{EA}}\),此时结构任意一点在指定方向的位移公式变为以下: $${\Delta = \sum {\int {\frac{{n{F_N}}}{{EA}}} } {\rm{ds}} = e\sum {nL} …

[预告][济济一谈] 基于调谐液体阻尼器(TLD)的高层建筑风振控制分析与工程应用

实干、实践、积累、思考、创新。 内部讲座预告,欢迎广州地区的朋友线下参加! 济济一谈” 是RBS内部相当活跃的技术交流平台,在实际工程中遇到的各类问题和解决方案,同事们都可以开放地交流,相互启迪。 微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[编程][软件] PDDVA: Parameter design of dynamic vibration absorber [PDDVA: 动力吸振器参数设计软件]

实干、实践、积累、思考、创新。 20230316写的题目,随后更新……     微信公众号 ( Wechat Subscription) 欢迎关注 “结构之旅” 微信公众号

[CSI OAPI][编程] CSI OAPI EX1: 运行/关闭/捕捉 SAP2000 [Start/Exit/GetActive SAP2000]

实干、实践、积累、思考、创新。 20190520写的题目,终于开始更新了。最近准备陆陆续续做一些 ETABS SAP2000 API 二次开发的训练,这里仅仅做个记录。 CSI OAPI 开发 案例1: 运行/关闭/捕捉 SAP2000。 程序界面如下: 程序基本实现的功能是: 点击open新建一个SAP2000; 点击GetActive 捕捉当前SAP2000,并显示版本编号。 点击Close关闭当前SAP2000。 相关资料 ( Related Topics ) [01] [CSI OAPI][编程] CSI OAPI EX1: 运行/关闭/捕捉 SAP2000 [Start/Exit/GetActive …

[Abaqus][笔记] Abaqus中单元应力云图平滑参数设置

实干、实践、积累、思考、创新。 默认情况下,Abaqus中的单元应力云图再节点上是有平均处理过的。 有个Averaging threshold参数控制节点应力的平均处理程度,默认是75%,也就是原图图例中显示的 avg=75%。 有时候我们调试一些模型,需要查看平滑之前的应力结果时,就需要取消应力平滑。以下两个图记录具体参数的设置位置。 相关内容 ( Related Topics) [01]. Plate With Hole Stress Analysis [带孔平板应力分析] [02].Analysis of a Euler–Bernoulli beam with Abaqus [Abaqus欧拉-伯努利梁分析] [03].Torsion analysis by thermal analogy with …

[手绘大样][Detail Drawing] 悬臂板配筋构造(有高差) [Cantilever slab reinforcement details]

实干、实践、积累、思考、创新。 悬臂板配筋构造(有高差),参考 图集 17G101-11。 (1)当悬臂板的跨度较大且板面与内跨标高一致时,由于悬臂支座处的负弯矩对内跨中有影响,当内跨跨度较小时,甚至会出现全跨均为负弯矩,因此上部钢筋应通长配置。板面有高差时应采用分离式配置上部受力钢筋,悬臂板上部受力钢筋在内跨应满足锚固长度的要求。 (2)悬臂构件的上部纵向钢筋是受力钢筋,因此要保证其在构件中的设计位置,不可以随意加大保护层的厚度,否则造成板面开裂等质量事故。悬臂板要待混凝土达到100%设计强度后方可拆除下部支撑。 (3)抗震设防烈度为7度(015g)以上,且悬臂板跨度大于2米时,板上下纵向钢筋伸入支座内的锚固长度需满足抗震锚固要求。 相关话题 ( Related Topics) [01] [手绘大样][Detail Drawing] 墙竖向筋锚入基础 [Wall vertical ribs anchor into the foundation] [02] [手绘大样][Detail Drawing] 墙竖向筋锚入顶层板(梁) [Wall vertical reinforcement anchor into the …

[软件][笔记] midas Gen 模态应变能阻尼模型参数测试 [Modal strain energy proportional damping model in midas Gen]

实干、实践、积累、思考、创新。 最近采用YJK转模型到midas Gen,发现两个软件的地震力结果对不上,且差异较大,最后发现是阻尼模型参数设置有问题,而且可能存在一些bug,在此做个记录。 对比模型: 对比模型如下,下部4层材料为混凝土,上部6层为钢结构。其中YJK采用的是2.03版,midas Gen测试的是2020版。 两个软件模型的质量和周期结果一致,周期结果对比如下图所示。 具体模型: 在此基础上,进行了两大组模型对比测算,具体如下表所示: 编号 模型 备注 1 YJK 5%振型阻尼 阻尼比统一5% 2 Gen 5%振型阻尼(不修改阻尼比) 采用单条5%阻尼反应谱曲线,不勾选修改阻尼比 3 Gen 5%振型阻尼(修改阻尼比) 采用单条5%阻尼反应谱曲线,勾选修改阻尼比 1 YJK 材料阻尼(砼5%钢2%) 采用应变能阻尼,分别定义钢材和混凝土的材料阻尼 2 Gen …

[选波][地震波][工程] 某大底盘4塔结构的地震波选取(GMS选波系统-选波应用案例25)

实干、实践、积累、思考、创新。 用GMS选波系统( http://www.jdcui.com/?page_id=6118 )做的大底盘4塔结构的选波案例。 小伙伴的项目,是一个大底盘4塔,裙房三层,各塔楼总高在150m左右,为框筒结构。 设计地震分组为三组,设防烈度为7(0.1g),场地类别为II类。 结构的主要周期分布在1s~5s,分布范围较广,前15阶周期如下图所示。 振型号 周期 转角 平动系数(X+Y) 扭转系数(Z)(强制刚性楼板模型) 1 4.5462 34.66 1.00(0.67+0.33) 0 2 4.3686 94.82 1.00(0.04+0.96) 0 3 4.1572 123.65 1.00(0.32+0.68) 0 4 4.023 150.38 1.00(0.68+0.31) …

[软件][研究][编程] MPHI v2023: Sectional Moment Curvature Analysis Program [截面弯矩曲率分析软件]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon )     程序介绍 ( Program Introduction) 这是一个截面弯矩-曲率分析程序,这个程序是2015年写的,那时候我还在学校,是钢筋混凝土结构设计课程的期末作业,最近又被网友提醒,让我要把软件放上来,不然就撤销。好吧,于是我翻了旧电脑的资料,重新找到程序并打包整理上传,有需要的朋友可以看看。这个程序一个比较有趣的地方是,提供截面弯曲-曲率分析的整个加载动画,非常酷炫。 This is a section bending moment curvature analysis program, which was written in 2015, when I was still in …

[软件][地震动][更新] GMP v2023: A tool for Calculating Ground Motion Parameters for Seismic Analysis of Structures [结构抗震分析地震动强度指标/地震动参数计算工具]

实干、实践、积累、思考、创新。 程序图标 ( Program Icon ) 程序介绍 ( Program Introduction) GMP是一个结构抗震分析地震动强度指标/地震动参数计算工具,程序将地震波积分+反应谱分析+地震动参数分析等功能集合于一身,使用方便。程序经历了多个版本的更新和维护,一直在持续改进。 GMP v2018: [软件][地震工程] GMP v2018: 结构抗震分析地震动强度指标计算工具 ( GMP: A tool for Calculating Earthquake Intensities for Seismic Analysis of Structures) GMP v2020: [软件][地震动][Update] …

[编程][研究][软件] 一种摩擦型阻尼器滞回本构开发 (狗骨形滞回)[Hysteretic Constitutive Development of a Friction Damper (Dog Bone Hysteresis)]

实干、实践、积累、思考、创新。 程序图标 ( Icon ) 程序介绍 ( Introduction) 这是小伙伴找我们做的一种摩擦型阻尼器滞回本构开发,其中其滞回曲线为狗骨式滞回曲线。 与常规摩擦形阻尼器相比(滞回曲线基本为二折线),该类阻尼器滞回曲线由于是狗骨式,其耗能能力相对更大,且在更大变形下能提供刚度。 该类阻尼器的滞回曲线大致如下图所示。 程序的目的是通过设置本构参数,然后导入指定的位移历程,查看力-位移滞回曲线及刚度滞回曲线。 程序界面 ( Screenshot) 程序动画 ( Videos) 力-位移滞回曲线动画 刚度-位移滞回曲线动画 相关博文( Related Topics) [01] [科研][软件][OpenSees] OSBWTest: OpenSees BoucWen Material Test ( OpenSees BoucWen材料测试) [02] [研究][软件] …

[软件][编程][地震动] NFAGM近场脉冲型地震动人工合成程序 案例2—— 正弦脉冲波生成与拟合 (Case 2 of NFAGM Near Field Pulse Type Ground Motion Artificial Synthesis Program – Sinusoidal Pulse Wave Generation and Fitting)

实干、实践、积累、思考、创新。 NFAGM是小伙伴找我们做的 NFAGM近场脉冲型地震动人工合成程序,具体可以在这个链接查看:http://www.jdcui.com/?p=20405 前面的博文《 [软件][编程][地震动] NFAGM近场脉冲型地震动人工合成程序 案例1—— 单向脉冲波生成 (永久地面位移现象)》通过例子介绍了单向脉冲波的生成,这个博文,通过例子,从拟合的角度讲解NFAGM正弦脉冲波的人工合成。具体参数的合理性这里不细究,例子重在说明软件的大致使用过程,以供参考。 STEP 1: 导入底波加速度 由图可见,速度时程存在明显的速度脉冲。速度脉冲成一个正弦波的形式。 STEP 2: 过滤底波脉冲 STEP 3: 设置正弦速度脉冲 设置一个正弦式速度脉冲,去拟合原始天然波的速度脉冲。 STEP 4: 生成人工脉冲波 对合成的脉冲波及原始天然波的时程结果及反应谱结果进行对比,如下图所示。 由图可见,合成的脉冲波及天然波在时程及反应谱上均较为相似,合成脉冲波基本能拟合天然波,从这个角度反过来也说明,NFAGM这种脉冲波合成方法是可行的。 相关博文( Related Topics) [01]. [Tool] SPECTR …

[软件][地震动][编程] GM_Truncation: A Program for truncating ground motion records [地震波截断工具]

实干、实践、积累、思考、创新。 – – – – <随后更新> – – – –       相关内容(Related Topics) [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] …

[编程][动力学][软件] SDOF_RUNGE: RUNGE-KUTTA Method for Dynamic Analysis OF SDOF Structures [单自由度结构动力分析-龙格-库塔法]

实干、实践、积累、思考、创新。 程序图标 ( Icon ) 程序介绍 ( Introduction) 最近看文献,整理资料,遇到Runge-Kutta法相关的内容,于是整理SDOF_RUNGE程序,通过编写程序,掌握RUNGE-KUTTA法的基本概念。 数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。Runge-Kutta公式的思路就是利用区间内一些特殊点的一阶导数值的线性组合来替代某点处的n阶导数值,这样就可以仅通过一系列一阶导数值来得到某点幂级数展开的预测效果。在工程中最常用的是四阶龙格-库塔积分,也就是 RK4 积分,其完整的表述如下(搬运自百度): 已知初值问题: 对于该问题,RK4法的表达式为: 其中 上面的递推公式中,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积所决定。该斜率是以下斜率的加权平均,k1是时间段开始时的斜率;k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn+h/2的值;k3也是中点的斜率,但是这次采用斜率k2决定y值;k4是时间段终点的斜率,其y值用k3决定。 结构动力学中,可以利用该方法,进行结构的动力时程方程的求解。SDOF_RUNGE就是用采用 RK4求解单自由度动力时程分析的小程序。SDOF_RUNGE的编制主要参考William T. Thomson, Marie Dillon Dahleh 编写的《Theory of Vibration with Applications》的第五版,我看的清华大学出版社出版的影印版纸板,原版和影印版的封面如下: 采用Runge-Kutta法求解结构动力方程,首先需要将原来的2阶动力微分方程降阶为1阶,变为上面介绍的标准模式,然后再套用迭代公式进行求解。《Theory of Vibration with …

[结构][抗风][抗震] 结构风致响应和地震响应的差异!

实干、实践、积累、思考、创新。 随后更新……       [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] [03]. [程序][软件]Ground Motion Library [强震记录管理] [04]. Artificial ground motion generator [人工模拟地震动] [05]. ATC-63 …

[结构][研究][原理]低矮建筑及高层建筑地震作用下楼层加速度的差异?

实干、实践、积累、思考、创新。 随后更新……       [01]. [Tool] SPECTR – A program for Response Spectra Analysis [反应谱计算程序] [02]. [程序][Tool] Ground Motion Selection [强震记录选取] [03]. [程序][软件]Ground Motion Library [强震记录管理] [04]. Artificial ground motion generator [人工模拟地震动] [05]. ATC-63 …

[盈建科][笔记] YJK构件地震剪力的调整与构件设计内力组合 —— 测算案例

实干、实践、积累、思考、创新。 今天复核施工图配筋,发现一个柱配筋较大,于是认真检查了柱子的内力计算过程,该柱子为地震控,具体校核过程如下。 检查该柱子具体的设计信息如下: 其中 02vx,02vy — X、Y向0.2V0调整系数,分别为 1.722 和 2.022,ηmu,ηvu,ηmd,ηvd — 柱、墙顶、底的强柱弱梁、强剪弱弯调整系数,ηmuu,ηmd均为1.4,因为结构体系为框架-核心筒结构,框架抗震等级为1级,根据规范,此时框架的弯矩增大系数为1.4,剪力增大系数ηvu,ηvd均为1.96,等于1.4*1.4,因为框架的剪力为在框架弯矩放大的基础上再放大,是连乘关系。 由图可见,荷载组合(35)下,配筋最大,为非构造配筋,配筋面积为2755,引起荷载组合35配筋较大的原因主要是弯矩极大,达2903kN.m。检查荷载组合35如下,可以看到,X向弯矩其实主要是由X向风及X向地震控制,以地震荷载为主。我们下面复核弯矩2903kN.m的计算过程。 查看YJK的单工况下内力的标准值,并进行手算复核。(其中地震作用的结果为调整后的结果,即经过剪重比、0.2V0等的调整后的结果,对于本例,X向及Y向剪力及弯矩放大系数分为1.722和2.022,因为只有0.2V0调整。) 具体验算结果如下表所示: 响应 D L W EX(调整后) EY(调整后) 未考虑强柱弱梁1.4、强剪弱弯1.96 考考虑强柱弱梁1.4、强剪弱弯1.96 YJK结果 YJK/手算 MX 212.8 102.4 9.9 152.9 …